

Ulrich Heck, DHCAE-Tools UG

CAD geometry based pre-processing for CFD using abstract modeling techniques

CastNet: CAD-based Pre-Processor for OpenFOAM®

Attributes: Concept of CAD associated mesh and solution set-up

Abstract modeling

Fifth OpenFOAM Workshop 21-24 June 2010 Gothenburg, Sweden

CastNet CAD input and meshing

- Modeling and meshing environment for CFD and FEA
- CAD-Model based (reads Parasolid -xt, Acis –sat or Granite Pro-E parts) or discrete mesh data (e.g. stl)
- Builds internally non-manifold model based on CAD assemblies with conformal mesh transition between parts
- Generates hybrid meshes
- CFD specific features (boundary-layer-meshing, curvature controlled meshing,...)
- CastNet is based on commercial meshing, CAD import and abstract modeling technology (not open source)

OPENFOAM® is a registered trade mark of OpenCFD Limited
This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM® software and owner of the OPENFOAM® and OpenCFD® trade marks.

CastNet for OpenFOAM®

Major goals:

- Providing access to reliable, robust and high quality CFD-meshing based on CAD geometry
- Establishing complete GUI based environment: Access to strong OpenFOAM® -solution capabilities without editing text files or detail knowledge of keyword-structure (e.g. "turbulentMixingLengthFrequencyInlet")
- Reducing the time from CAD model to OpenFOAM® run-ready case

Fully compatible: User can switch anytime from GUIs to text-based model setup

User can extend the CastNet model output for specific needs

CastNet for OpenFOAM®

Major features:

- Support of OpenFOAM® 1.5 and OpenFOAM® 1.6.(x)
- Direct generation of complete models (variables, controlDict, solver settings, materials etc.)
 for more than 15 solvers in 1.6
- Convenient definition of boundary conditions using derived OpenFOAM® patches
- Definition of local, initial conditions e.g. specification of volume fractions in particular regions
- Face and cell zones (e.g. baffle or fan faces, porous or MRF-zones)
- User support by "defaults" e.g. walls with zero-gradient or wall function selection
- SnappyHexMesh in case hex-dominant meshes are required
- Additional GUI for job-control during the run: Switching solvers, changing schemes, modifying underrelaxtion factors, plotting residuals,...

Example

Meshing

Boundary-Layer

Note: More complex meshing examples of customer cases presented in Gothenburg

results

Visualized with Paraview

OpenFOAM® Interface

OpenFOAM® Interface

OpenFOAM® Interface

Advantages of CAD associated modeling

- Allows changes easily, e.g. boundary-layer, mesh refinement zones boundary conditions
- Mesh can be defined and successively improved in a step by step approach
- Meshing process can be optimized dynamically considering all attributes (e.g. adapted surface mesh if volume mesh would cause bad elements)
- Simplifies data-management: Attribute file and CAD geometry store all meshing and simulation model data (solver settings, material...)

Establish and undo associations

Abstract modeling:

Abstract modeling is a technique that allows to define the components of a numerical analysis problem independent of a specific geometric.

Concept- or design study

Basic question:

How can CAD entities (faces, regions, edges...)
be addressed in very different designs?

Several options in CastNet:

- 1. Identification tags in CAD system
- 2. Geometrical compare
- 3. Relative relations and search algorithms

Example: Relative relations and search algorithms

1. Step:

Definition of abstract components

General model:

Used for controlDict, solver setting, fluid properties,...

CAD-model related entities (e.g. faces):

Used for:

Meshing, boundary conditions

Example:

Identify middle faces for

- 1. Meshing: boundary layer
- 2. Boundary condition: Heating walls

- 2. Step: Modeling GUI:
 Simplifies the abstract
 component definitions and
 visualizes the component in
 target models.
 Typical operations are:
- Find nearest entity (e.g. face) of a given point
- Bounding boxes: E.g. pick all entities in a specified bounding box (used here to identify the midfaces).
- <u>Loops</u> over geometrical objects.
- Boolean operation (e.g. compare regions to identify common faces)

placeholder for the real CAD entities

4. Step: Finally: Applying the abstract model to different CAD geometry

Benefits of abstract modeling

- Allows defining components of OpenFOAM® cases independent of a specific geometry.
- Fast and reliable model generation for geometry case studies including meshing, boundary conditions and solver settings.
- The abstract model condenses all CFD- and OpenFOAM® expert knowledge (meshing, solution settings) resulting in run-ready cases after applying the abstract model to various CAD-geometry cases.
- The risk of biasing the design study by mesh dependency or different solution setting is reduced.

CastNet for OpenFOAM®

- Further support of CastNet features: Easy identification of cell and faces zones for multiregion applications (e.g. chtMultiRegion, FSI...)
- Extending the runGui: Allowing a detail job control and manipulation (e.g. plotting probes, switching more schemes....)
- Support further features for 1.6-extended as soon as this version is available
 - GGI
 - Sliding meshes
 - Windows Version
 - more schemes, patches and solver

Thank you for your attention!

For more information (e.g. movies "CastNet for OpenFOAM®") please visit:

http://www.dhcae-tools.com/OpenFOAM.htm