

Partitioned strongly coupled Fluid-Structure Interaction

7th OpenFOAM Workshop Darmstadt, Germany

Manuel Kosel*§1 and Ulrich Heck2

¹Center for Computational Engineering Science, RWTH Aachen University, Germany

²DHCAE Tools UG

Topics

- Motivation
- Common problems with FSI
- Objective
- General FSI procedure
- Idea for the new solver structure
- Modeling
- Requirements for the solvers
- Updated lagrangian finite volume solver
- Aitken relaxation
- Test & Validation
- Conclusion

Motivation

Why Fluid-Structure Interaction?

- In flow problems the deformation of solids is not always negligible (e.g. wing deflection)
- → The deformation might be used in an application (e.g. membrane pump)
- The maximal solid deformation is a design property that needs to be statisfied (solid cracking)

General FSI procedure

In general FSI solver have the following steps:

- → Solve the fluid domain
- → Set the pressure at the interface as BC for the solid
- → Solve the solid
- → Move the mesh
- (strong coupling:) repeat until convergence

Common Problems with FSI

Working with FSI one usually deals with those problems:

- Interpolation errors on the Interface
- Stability problems
- (incompressible flows:) artificial added mass effect
- These are coupling problems and can be handled independent of the fluid / solid solvers

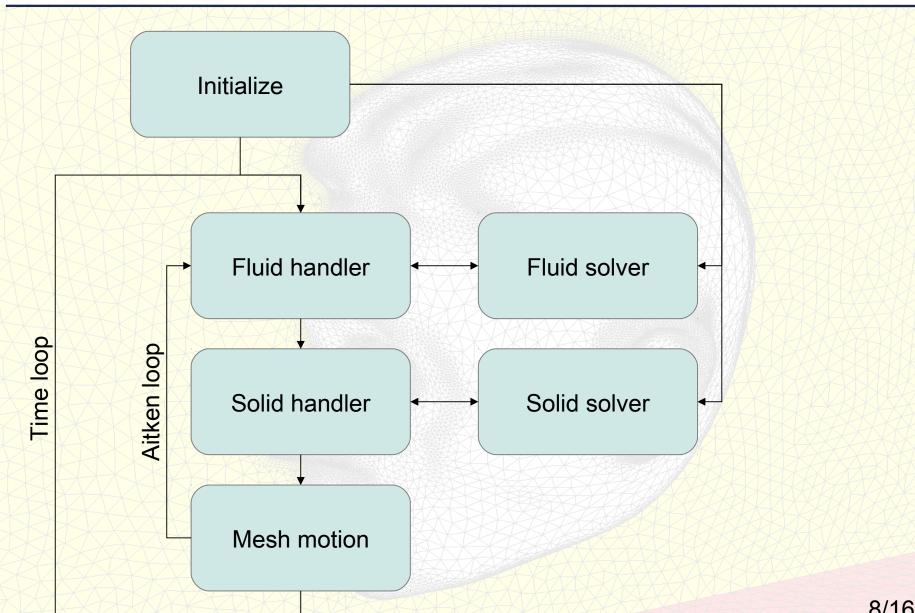
Idea for the new solver structure

When looking at the FSI solver by Robert Campbell who used a separate class for the solid solver and one for the coupling this idea came up:

Create a general FSI solver which

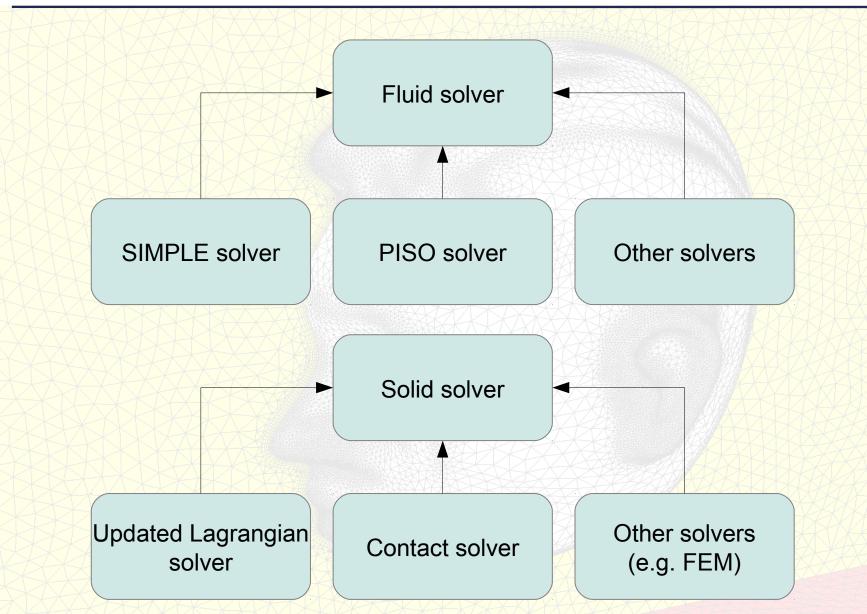
- Calls dynamically loaded solvers which are userdefined (e.g. SIMPLE / PISO)
- → Handles general FSI common problems (Interpolation / Stability)
- → Moves the mesh

Objective



The aim is to provide a coupling solution for Fluid-Structure Interaction problems with these properties:

- → Strong coupling
- Aitken relaxation
- → Solver independent, i.e. the coupling itself is modeled but different solvers can be used (even non-OpenFOAM solvers); they only need to fulfill the requirements.
 - They are loaded on runtime like turbulence models


Modeling

Modeling

Requirements for the solvers

Fluid solver:

- No problems with moving mesh
- Output of the pressure at the boundary

Solid solver:

- → Uses traction BC
- Output of the displacement

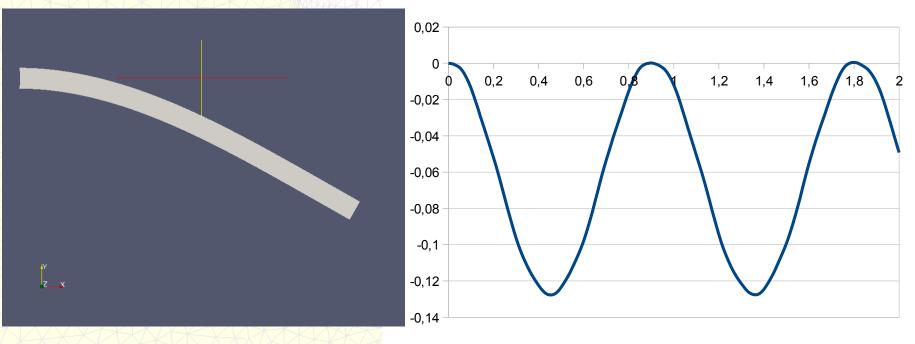
Updated lagrangian finite volume solver

- The solid solvers in OpenFOAM(-extend) do not support large deformations.
- Testcase for strong coupling needs large deformations
- Need new OpenFOAM solver for solids. In this case the updated lagrangian finite volume solver by Tukovic and Jasak [1] has been used

Test & Validation

The solver has been tested with the benchmark by Turek [2]:

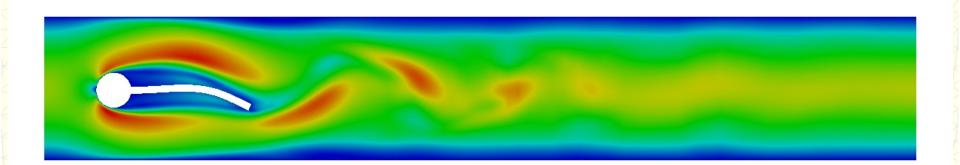
- Laminar incompressible flow around a cylinder with
- → A flexible bar attached to it
- $\frac{\rho_{solid}}{\rho_{fluid}} = 1$ strong coupling is neccessary


Test & Validation

CSM Test:

ρ	[kg/m³]	1000
v	[-]	0.4
E	[10 ⁶ kg/ms ²]	1.4
g	[m/s ²]	2

Tip displacement



Test & Validation

lest:	
/ (A	

		Solid	Fluid
ρ	[kg/m³]	1000	1000
\boldsymbol{v}	[-] [10 ⁻³ m ² /s]	0.4	1
E	[10 ⁶ kg/ms ²]	5.6	-
U	[m/s]	_	2

Conclusion

- → FSI coupling can be simplified by using existing solvers and just adding a specialized solver for the actual fluid / solid problem, e.g. contact solver for the membrane pump
- External solvers can be used by making an interface for the fluid-/solid-handler
- Development can be faster and more efficient by reusing one piece of code
- This solver is still in development! News and the final solver will be available at www.dhcae-tools.de

Questions?

Special thanks to Philip Cardiff, UCD Dublin, who helped me with problems.

[1]: Tukovic, Zeljko; Jasak, Hrvoje, UPDATED LAGRANGIAN FINITE VOLUME SOLVER FOR LARGE DEFORMATION DYNAMIC RESPONSE OF ELASTIC BODY, ISSN 1333–1124

[2]: Bungartz, Hans-Joachim; Schäfer, Michael, eds. (2006). Fluid-structure Interaction: Modelling, Simulation, Optimization. Springer-Verlag. ISBN 3-540-34595-7.