Partitioned FSI-coupling with Open-source technology.

Pankaj Daga, Ulrich Heck, Martin Becker DHCAE Tools GmbH

www.esi-group.com

Copyright © ESI Group, 2016. All rights reserved.

DHCAE Tools GmbH, Germany

This offering is not approved or endorsed by ESI Group, the producer of the OpenFOAM[®] software and owner of the OPENFOAM[®] and OpenCFD[®] trade marks.

Content

- Introduction
- Types of FSI-coupling
- FSI-coupling using Open-source technology
- Example/Validation
 - Conclusion

Filter application

Types of FSI-coupling

Partitioned Coupling:

Individual solution of fluid and structural part.

Monolithic Coupling:

Combined solution of fluid and structural part with common matrix.

Monolithic Coupling

- •Incompressible fluid/ soft structure
- •Hyperelastic material
- •Highly dynamic f~100-200Hz
- •Wall contact

Error: Pressure/Flow ~ 10 %

Partitioned Coupling

- •OpenFOAM as CFD solver.
- CalculiX/Abaqus as structural solver

Advantage OpenFOAM:

- -Flexible solver structure
- -Mapping tools (sample)
- -Point based mesh-motion

Objectives:

- -Static applications
- –Use of OpenFOAM functionalities
- -Extension/Development for transient applications

Pressure/ Wall shear stress

- Determine pressure and wall shear stress on FSI-Interface
- Use of sample utility for pressure values and wallShearStress utility for shear stress values
- Triangulation of surface mesh
- Use of triangulated element mid points as sampling point.

Pressure/ Wall shear stress

- Integration to get forces.
- Distribution of forces on nodes.
- Computation of displacements with Abaqus/CalculiX.

Force Distribution

- Linear Element
 - > Triangular element $F_{node} = \frac{1}{3}F_{Total}$
 - ➢ Quad element $F_{node} = \frac{1}{4}F_{Total}$
- Quadratic Element
 - Triangular element $F_{corner_Node} = 0$ $F_{mid_Node} = \frac{1}{3}F_{Total}$
 - Quad element

Displacement

- CFD mesh is usually finer compared to structural mesh
- Interpolation method
- Barycentric Interpolation:
 - Weighted based on surface area
 - Special treatment of the corner points.

Coupling

- Relaxation possibilities:
 - Forces
 - Displacements
- Different re-mesh options
 - Full
 - Partial

Mesh update & Re - mesh

Re-mesh flow area

Partial Re-mesh/ Partial FSI Area

- Division of FSI-area in small region.
- Use of Arbitrary Mesh Interface(AMI).
- Re-mesh for only selected region, reduces time required.

• mergeMesh for complete fluid area.

Partial Re-mesh

Permeable shell element

Validation

Validated with other commercial FSI-tools.

OpenFOAM CalculiX Coupling

get it right

Technical Application

0.0002 0.0004 0.0005

Extrusion-Tool

Fluid domain: Approx. 4 Mio fluid cells Structural domain: Approx. 25 000 quad elements

Currently used in an EU funded Cloud-Computing project for FSI-simulations of polymer extrusion dies.

www.esi-group.com

CastNet FSI-Setup

- FSI-setup for both OpenFOAM and CalculiX in a single case definition.
- Automated workflow based on input in FSI property file.
- Export of intermediate data for **stl** file generation.

Conclusion

Current status:

- Partitioned FSI-coupling for static applications
 - for shells and solids
 - With Re-meshing (Full/Partial)
- Validation with literature examples and commercial software
- With CalculiX: Completely Open-source
- With Abaqus: Complex non-linear effects
- GUI-Integration with CastNet/RunGui

Fundings

Parts of the project received public fundings:

 Zentrales Innovationsprogramm Mittelstand (ZIM):

"Methods for simulating particle retention at porous structures and its effects on flow resistance". Gefördert durch:

Bundesministerium für Wirtschaft und Technologie

aufgrund eines Beschlusses des Deutschen Bundestages

• Seventh Framework Programme:

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7-2013-NMP-ICT-FoF) under grant agreement n° 609100.

Thank You

