Tools

C DHCAE E

dhcaeLTSThermoParcelSolver

Solver and Test Cases

Martin Becker

martin _becker@dhcae-tools.de

06,/13/2012

Abstract

This is a short description of the dhcaeLTSThermoParcelSolver, which can be used to simulate the
cooling effect of evaporating droplets of water in a quenching device, and a desciption of a series of
test cases for the solver.

The focus of the content lies on the Local Time Stepping (LTS) approach as an acceleration technique
for problems which have a steady state solution. Next to the description of the idea behind local time
steps some advice is given on the usage of the numerous parameters controlling the LTS method.
While the reduction of computational time can be outstanding with a LTS based solver, especially the
visualization of the Lagrangian particles is a problem. To overcome this drawback the combination of
the dhcaeLTSThermoParcelSolver with a PISO/PIMPLE based solver is presented.

Contents

1 Introduction

1.1 Motivation e e e e e e e e e e e e e
1.2 About the solver e
1.2.1 Theorigins e e e e
1.2.2 Removed features L
1.2.3 New features
1.3 The Local Time Stepping (LTS) approach

2 Preparations
2.1 Compiling the dhcaeLTSThermoParcelSolver
2.2 Usage of rotational symmetry (wedge elements)

3 General workflow

3.1 Initialization with rhoSimpleFoam L.
3.2 Simulation with dhcaeLTSThermoParcelSolver
3.2.1 Parameters for the LTS management
3.2.2 Convergence monitoring e
3.2.3 Definition massFlowRate
3.2.4 Pros and cons of LTSReactingParcelFoam
3.3 Continued simulation with reactingParcelFoam
3.4 Alternative simulation with reactingParcelFoam

4 Test cases

4.1 Specifics of the provided meshes o oL
4.2 Wedge series e e
4.2.1 case rhoSimpleFoam L
4.2.2 case dhcaeLTSThermoParcelSolver
4.2.3 case reactingParcelFoam continuedo
4.2.4 case reactingParcelFoam 000000
4.3 3D series.o e e
4.4 Someresults.
5 Hints
5.1 reactingParcelFoam oL
5.1.1 constant/reactingCloud1Properties
5.1.2 system/controlDict
5.1.3 Don’t use PIMPLE instead of PISO

Trademarks

OpenFOAM is a registered trademark of SGI Corp.

ii

Chapter 1

Introduction

1.1 Motivation

Let us take a toxic waste incineration plant. The waste is burned at very high temperatures and the
resulting flue gas is an awful mixture of toxic gases. Sometimes a thermal utilization is even omitted
due to the high effort required. However it is necessary to do a gas scrubbing before emitting the flue
gas to the environment. The facilities for cleaning the flue gas need a much lower gas temperature
to do their job. Therefor an important procedure is to cool down the flue gas to the desired target
temperature. This is done by a quenching device, wherein droplets of water are injected into the hot
gas and the evaporative cooling effect is used. The quench and some of the final results are presented
in figure 1.1. The simulation of such a quenching device was the motivation for the modification of
the “LTSReactingParcelFoam” solver to become the “dhcaeLTSThermoParcelSolver” solver.

Due to the very special objective of simulating the quenching device there are some simplifications
possible. For example it can be granted that the water droplets do not hit the wall. Therefor a special
treatment of wall films is not necessary. Furthermore it is known, that the water droplets evaporate
before reaching their boiling temperature. So the standard liquid evaporation of OpenFOAM can be
used.

To do extensive studies on the solver and investigate its behaviour it was necessary to simplify the
original quench. As shown in figure 1.2 the resulting geometry can be meshed with hexahedral elements
and gives the possibility to make use of symmetry planes or even wedge elements. The simplified meshes
and cases are provided to the community.

1.2 About the solver

dhcaeLTSThermoParcelSolver is a solver for steady, compressible, laminar or turbulent non-reacting
flow with multiphase Lagrangian particles. It uses the Local Time Stepping (LTS) approach to speed
up the convergence.

The focus of this solver is to model the strong coupled thermal interaction of evaporating water droplets
in a quenching device for cooling of hot gas. In addition to the momentum and thermal coupling there
is a mass transfer between the dispersed and the continuous phase.

1.2.1 The origins

The dhcaeLTSThermoParcelSolver is derived from LTSReactingParcelFoam. In the anouncement of
the solver! it was described as a prototype solver that requires further testing and/or development.
This was done in a project dealing with the quenching device described above.

1.2.2 Removed features

In comparison to the original LTSReactingParcelFoam several features are removed:

Lhttp://www.openfoam.org/version2.0.0 /lagrangian.php

(a) Concept of the quench: The way of (b) General view of the quench. The cylin-
the hot gas is indicated by the red lines. der has a height of some 19m and a diameter
A secondary stream of air (blue) causes a of 7m.

twist to keep droplets (green) and hot gas

in the center of the tube and away from

the quench’s wall.

Durchmesser

IsoflGche
H20 5%

8.0e-05

o
(0]
+
o
o

(c) Temperature [K] (d) Particle cloud with the diameter (e) Iso surface 5% H20 fraction.
of the water droplets.

Figure 1.1: A quenching device for cooling of hot gas.

(a) A single levitating nozzle (yellow) is placed on the center line of a tube.

(b) 90° segment with symmetryPlane.

(c) 4° segment with wedge mesh.

Figure 1.2: Simplifications of the quenching device. Symmetry features are used to reduce the mesh
size.

e porous zones
e chemical reactions

e explicit source terms
e radiation

The main reason to do this was to focus the solver on the main goal, namely the simulation of the
quenching device. The number of text files to be provided for the solver was reduced, the necessary
features got clearly visible.

However it should be easy to add one or all of these removed functions again, just have a look at the
current LTSReactingParcelFoam and its implementation.

1.2.3 New features

There are several new features added to the basic solver, too:

e dhcaeLLTSThermoParcelSolver uses hsPsiThermo classes instead of hRhoThermo classes. There-
for you can use the same material definition as with reactingParcelFoam.

e The parameters to manage the Local Time Stepping (LTS) procedure are moved into the system /-
controlDict file. Further more the values for maxCourant, rDeltaTSmoothingCoeff, maxDeltaT
and alphaTemp are interpolated from a user defined table. The idea behind is to use stable but
slow parameters in the early stage of convergence, and change these values in the direction of
faster convergence later on.

e A bit of additional timing is added, so that one can easily check how much computational time
the particle tracking part needs, and how much the solving of the continuous phase takes.

1.3 The Local Time Stepping (LTS) approach

For the PISO algorithm to be stable it is necessary to have the maximum Courant number stay below
1 or even lower (see CFL condition on Wikipedia). The Courant number in its general form is defined
as

lu| - At
Az
with velocity u, time step At and length interval Ax.
With the definition of a maxCo value and enabling the adjustTimeStep option in the system/con-
trolDict file it is possible in many OpenFOAM solvers to use a global time step that fulfills the CFL
condition. This global time step is adjusted continuously at the beginning of an iteration:

Co

maxCo - Ax;

AtFY = min(]
u n

)

The global time step is used throughout the entire computational domain for the actual iteration. The
big problem of this approach is in short: the smallest cell with the highest velocity determines the
speed of the simulations progress! Most of the cells could be driven with a much larger time step, but
they are not allowed to do so.

At this point the Local Time Stepping approach comes into play. The idea is to use an individual time
step of the maximum possible value for each cell. So instead of using a global maximum time step the
LTS technique uses a global maximum Courant number. The individual time step for cell with index

(3555}

17 is:

maxCo - Ax

A =
™|

U(m/s)

E0.0

~16.0
12.0

fao
ELLO
0.0

(a) Velocity U [m/s]

Cell volumes [m™ 3]

Ee—OA

(b) Cell volumes [m?

(c) Local time steps [s]

Figure 1.3: The cell velocity is combined with the maximum global Courant number and the local cell
size. The result after an additional smoothing step is a field for the local time steps.

Informations in the flow field are transported much faster through the domain. The LTS approach can
be used if a steady state solution exists and if you are not interested in the intermediate steps. Before
reaching the steady state the solution is most likely invalid and possibly even physically nonsense.
Finally let’s have a look an the way the local time step is calculated by the solver in figure 1.3.

Chapter 2

Preparations

2.1 Compiling the dhcaeLTSThermoParcelSolver

I assume, that you were able to download the sources of dhcaeLTSThermoParcelSolver already. A
good place to unpack the solver is your OpenFOAM’s user directory. Quite often this is the directory
“~/OpenFOAM /username-2.1.x". So the dhcaeLTSThermoParcelSolver solver should be placed at
“~/OpenFOAM /username-2.1.x/dhcaeLTSThermoParcelSolver”.

Open a shell and navigate to this location. Activate your OpenFOAM environment and call “wmake”.
That’s it. You can check the success of the compilation by typing “which dhcaeLTSThermoParcel-
Solver”, which should return the path to the newly created binary executable.

2.2 Usage of rotational symmetry (wedge elements)

There are two series of cases provided with the dhcaeLTSThermoParcelSolver. One of them uses a
very small wedge based mesh. However in the standard OpenFOAM 2.1.x release the treatment of
the situation, where a particle hits the symmetry face of a wedge element, is to give a fatal error and
shutdown the simulation.

Indeed, there are good reasons to do so, have a look at this thread:
http://www.cfd-online.com/Forums/openfoam-solving /62970-lagrangian-track-not-support-empty-patch-
interaction.html

This situation of a “hitWedgePatch” arises when using dhcaeLTSThermoParcelSolver on the example
geometries used in this text. Since we were able to get satisfying results with dhcaeLTSThermoParcel-
Solver on a wedge mesh, you might want to change the OpenFOAM sources a bit. An alternative
handling of the hitWedgePatch is already prepared and you can perform the changes in the source
code quickly.

e Open the file “OpenFOAM-2.1.x/src/lagrangian /basic/particle/particleTemplates.C” with your
favorite text editor.

e Search for “Foam::particle::hitWedgePatch” in the file.

e Comment out the lines with the “FatalErrorIn” call, so that the following lines of code, which do
a simple reflection of the particle, get active.

e Open a shell and activate your OpenFOAM-2.1.x environment. Navigate to the location
“OpenFOAM-2.1.x/src/lagrangian /basic”, type in a “wclean” and a “wmake libso”.

e Recompile the dhcaeLTSThermoParcelSolver as described in section 2.1.

e If you want to run reactingParcelFoam (original PISO based solver of the OpenFOAM-2.1.x as-
sembly), for example for veryfication purpose or to create fancy animations with particles flying
aroung, then you must recompile this solver, too: open a shell, navigate to
“OpenFOAM-2.1.x/applications/solvers/lagrangian /reactingParcelFoam/” and type “wclean” and
“wmake”.

The resulting particleTemplates.C code snippet should look like this:

template<class TrackData>
void Foam:: particle :: hitWedgePatch
(
const wedgePolyPatch& wpp,
TrackData&

_~——

Vz
FatalErrorln
(
"void Foam::particle ::hitWedgePatch"
/!(//
"const wedgePolyPatché wpp, "
"TrackData"
/!)//
) << "Hitting a wedge patch should mnot be possible.”
<< abort(FatalError);
*/

vector nf = normal();
nf /= mag(nf);
transformProperties (I — 2.0%nf*nf);

Chapter 3

General workflow

3.1 Initialization with rhoSimpleFoam

It’s a good idea to initialize the dhcaeLTSThermoParcelSolver with the standard rhoSimpleFoam solver
first. Especially the U file is quite useful to prevent the dhcaeL.TSThermoParcelSolver to struggle with
the particle movement too much in the early stages of convergence. It’s not necessary to have fully
converged rhoSimpleFoam simulation; in the cases provided here 1000 iterations are assumed to be
sufficient.

3.2 Simulation with dhcaeLTSThermoParcelSolver

As soon as the rhoSimpleFoam solver has done the initialization, the results are mapped to the 0
directory of the dhcaeLTSThermoParcelSolver.

3.2.1 Parameters for the LTS management

There are several parameters the manage the LTS procedure. In contrast to the original LTSReact-
ingParcelFoam the definition of the relevant settings are placed in the system/controlDict. Moreover
the values do not need to be constant for the complete simulation, but they can be interpolated from
a table. Here is a snippet of the system/controlDict:

_maxCourantTable constant 0.5; // this entry is "deactivated" with the underscore
maxCourantTable table // replaces the maxCo entry in fvSolutions PIMPLE dictionary
(
(0 0.1) // start with a stable wvalue
(500 0.2) // increase it until iteration 500
(20000 0.2) // stay at 0.2 until the end
)
rDeltaTSmoothingCoeffTable constant 0.5;
_rDeltaTSmoothingCoeffTable table // this entry is "deactivated" with the underscore

(0 0.2)
(500 0.5)
(20000 0.5)

maxDeltaTTable constant 1000000;
_maxDeltaTTable table // this entry is "deactivated" with the underscore

(0 1.0)

(500 100000.0)

(20000 100000.0)
)
_alphaTempTable constant 0.1;
alphaTempTable table // replaces the alphaTemp entry fvSolutions PIMPLE dictionary

(0 0.2) // start with a stable value
(500 0.5) // increase it until iteration 500
(20000 0.5) // stay at 0.5 until the end

maxCourantTable: The value for the maximum Courant number is interpolated from this table.
A typical usage would be to start with a small maxCo value to have a stable beginning of
the simulation. The maxCo might then be increased after a couple of iterations. It might be
useful to reduce the maxCo again when reaching the final stages of the simulation. Instead of
using the table you can define a constant value here, too. Keep in mind, that this maxCo is
responsible for the continuous phase firsthand. The maxCo for the dispersed phase it managed
in the constant/reactingCloud1Properties file.

rDeltaTSmoothingCoeffTable: To avoid abrupt transitions from small local time steps to large
local time steps in neighbored cells the field with the reciprocal value of the time step is smoothed
by this parameter. This is especially useful when using tetrahedral cells or more general a mesh
with large local differences in cell sizes. A value of 1.0 does no smoothing, so each cell has its
own time step fitting the maxCo number. A value of zero will use a unique time step for the
complete domain.

maxDeltaTTable: You can limit the maximum time step allowed. If you have dead zones in your
domain the time step can rise ad infinity, so a limitation does no harm. However this value
should be really large (let’s say: 100000) to take the best out of the LTS approach.

alphaTempTable: This parameter limits the rise of the temperature in a cell. A value of 1.0 sets the
new value completely, a value of 0.5 blends between 50% of the previous value and 50% of the
new value. While this seems to be quite useful in simulations with chemical reactions, it’s not
an important parameter for the quenching device investigated here.

More settings must be done in the constant/reactingCloud1Properties file. Despite the correct defini-
tion of the mass to be injected you can adjust some specific LTS parameters here:

transient no; // no —> activate LTS; yes —> deactivate LTS
calcFrequency 2; // do the particle tracking every 2nd iteration
maxTrackTime 6.0; // track the particle for 6s at most

maxCo 0.05; // max Courant number for particle tracking

transient: Setting to “no” activates the LTS approach, setting to “yes” uses the PISO algorithm.

calcFrequency: Defines the frequency of the particle tracking step. This is a way to save lots of
computational time. A value of 1 is very accurate, a value of 2 is fine for the cases presented
here. Further increment of the calcFrequency provokes warnings in the thermodynamic libraries
and oscillation in the flow field, so be careful with this setting.

maxTrackTime: Defines the longest period of simulation time that a particle is tracked. When
having dead zones, or when a particle is sticked to the wall, the tracking algorithm might never
end. So limiting the maximum amount of tracking time available for each particle is a good idea.

maxCo: This value determines the accuracy of the particle tracking. A value of 0.2 means that each
cell is traversed by a particle in some 5 steps. You can save computational time by increasing
this value. For the very coarse mesh in the case provided here a very small value of 0.05 must
be chosen to fit the results from the PISO based reactingParcelFoam. When using a finer mesh
this value can be increased.

3.2.2 Convergence monitoring

Although dhcaeLTSThermoParcelSolver tries to reach a steady state solution, the initial residuals are
not that useful to determine wether convergence is reached. Due to the momentum exchange and the
non determinism of the stochasticDispersion model there is always some level of change in the flow
fields and the initial residuals stay at a rather high level. But of course it would be nice to have a
concrete criteria to rate the progress of the simulation. One way to do such a rating is to use probes
in the flow field, another way, which is applied here, is the usage of the fieldFunctionsObjects library
by definition in the system/controlDict:

10

H2d fraction @ quench K20 fraction @ outlet.
0.2 0.25
H20 fraction —— H20 fraction
0,12
016 0.2
0,14
s 0,12 = 0.15
2 :
£ ooa £
B 8
T 0,08 - 0,1
0,06
0,04 0.08
0,02
o 0
0 10 20 30 40 50 B0 T 80 o 10 20 30 40 50 60 70 80
Sinulation time [s] Simulation tine [s]
-8,73499, 0,0570077 -8,73433, 0,0712596 4
tad s Gnupit 1 9 @ 63
T [K] @ quench T [K] @ outlet.
1100 1200
TIKI — TR —
1000 1100
1000
o
800
800
= 2 a0
- -
700
700
BO0
BOO
500 500
400 400
0 10 20 30 40 50 B0 e 80 o 10 20 30 40 50 B0 70 a0
Sinulation tine [s] Sinulation tine [s]
x= 82,1429 y= 107081 -8.73493, £28.031)
(a) Convergence visualization for reactingParcelFoam...
A A
H20 fraction @ quench H2O fraction @ outlet
0.2 0.25
raction H20 fraction
0,18
0.16 0.2
0,14
s %ie g M5
3 Z
LA | E
& £
8 8
= 0,08 - 0,1
0,08
0,04 0,05
0,02
0 o
0 1000 2000 3000 4000 G000 BOOO FO00 8000 9000 10000 o 1000 2000 3000 4000 G000 BOO0 FO00 8OO0 000 10000
[teration Iteration
-1108,63, -0,0156712 -1108,63, —0,0195830 .
X Grupiot 2 IS
T [K] B quench T [K] @ outlet
1200 1200
T Kl — TR —
1100 1100
1000 000
an0 S00
2 w0 2 o
™o 700
BO0 BOO
500 500
400 400
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration Iteration
-1108.63, 337.31% L-1108.63, 337,315

(b) ... and for dhcaeLTSThermoParcelSolver.

Figure 3.1: The plots created when calling “gnuplot gnuplot.Me” in the case directory. These charts
are a convenient way to rate the convergence level of the simulation.

11

functions

{

outlet T _H20

{
type
faceSource;
functionObjectLibs ("libfieldFunctionObjects.so");
enabled true;
outputControl timeStep; // for reactingParcelFoam: outputTime;
outputInterval 25; // for reactingParcelFoam: 1;
log true;
valueOutput false;
source patch;
sourceName outlet ;
operation weightedAverage;
weightField phi;
fields (T H20);

quench average

{
type cellSource;
functionObjectLibs ("libfieldFunctionObjects.so");
enabled true;
outputControl timeStep; // for reactingParcelFoam: outputTime;
outputlInterval 25; // for reactingParcelFoam: 1;
log true;
valueOutput false;
source all;
sourceName regionO;
operation volAverage;
fields (T H20);

}

}

So the average temperature and the H20 fraction is evaluated at the outlet patch and for the whole
domain. The aggregated values are written to the HDD and can be visualized with small gnuplot
scripts named “gnuplot.Me” that are placed in the case directories:

set term XI11 3

set title 'H20 fraction @ quench’

set ylabel 'H20 fraction’

set xlabel ’Iteration’

plot "quench average/0/cellSource.dat" using 1:4 \
title ’H20 fraction’ with lines

pause 10

reread

Just open another shell and navigate to your case directory. After the first lines of the output files are
written you can call the script with “gnuplot gnuplot.Me”. The resulting plots are updated automati-
cally. See figure 3.1 for an example.

3.2.3 Definition massFlowRate

The massFlowRate in constant/reactingCloud1Properties takes care of the mass conservation: if you
run your simulation on a 4 degree wedge mesh you must reduce the massFlowRate to fit for the smaller
injection area. So when running your simulation on a 90 degree symmetryPlane mesh you must give
in the 22.5 time of the massFlowRate, and when running with the full 360 degree quench, 90 times
the value of the 4 degree wedge mesh case.

3.2.4 Pros and cons of LTSReactingParcelFoam

The big advantage of LTSReactingParcelFoam is the significantly reduced computational time. Indeed,
this benefit can be outstanding!

The big drawback however is the missing of useful parcel information. During each iteration the
droplets evaporate completely, so there is no chance to store the position, diameter, temperature etc.
There are some indirect possibilities to visualize the particles: if you uncomment the “//#include
“write.H” line in the dhcaeLTSThermoParcelSolver.C the source terms are written out with the other
result fields, and you can have a look at them in the postprocessor. If these source terms are missing
somewhere in the flow field, then no droplet is there... you can visualize the amount of H20, id
est the evaporated fraction of the droplets. But thats not satisfactory either. Therefor, if you need

12

Temperature T [K] @ patch outlet

1200 T T T T
1000+ T — .

X 800 """"""""""""""""""""""" """"""""" -

— : :

=] Running LTSThermoParcelFoam ; P ; :

+ ; . Continued simulation with

g for 20.000 iterations. reactingParcelFoam for

o . 700.000 iterations or :

5 600F \ ...\ | 100sofsimulationtime. o .
400* """"""""""""""""""""""" """"""""" -
200 : ‘ ' '

Simulations progress -->

Figure 3.2: Concept of the continued simulation. After 20.000 iterations with dhcaeLTSThermoParcel-
Solver another 700.000 iterations with reactingParcelFoam were appended.

to make a cute visualization of the particles cloud then you should do a continued simulation with
reactingParcelFoam...

3.3 Continued simulation with reactingParcelFoam

After the dhcaeLTSThermoParcelSolver reached steady state you can continue the simulation a bit
further with reactingParcelFoam from OpenFOAM’s standard solver assembly. It’s easy to do, since
you can reuse the thermophysicalProperties, the boundary conditions and all the results immediately.
Customizations must be done especially in the constant/reactingCloud1Properties file. The way how
to define the particle injection differs from the LTS steady state proceedings. Beside of that several
dummy files for radiation, combustion etc must be provided in the constant/ directory.

There are a couple of good reasons to combine reactingParcelFoam with dhcaeL.TSThermoParcelSolver:

e Since a steady state should have been reached with the LTS solver, the continuation with react-
ingParcelFoam should not lead to significant changes in the results.

e The lack of good particle visualization possibilities in dhcaeLTSThermoParcelSolver can be over-
come with the particle tracking information provided by reactingParcelFoam.

e In cases where no steady state exists, the dhcaeLTSThermoParcelSolver can be used to initialize
the flow field in a very efficient manner. From this starting point the thermoParcelFoam solver
can provide time discretized results with far lower computational effort.

The combination of dhcaeLTSThermoParcelSolver and reactingParcelFoam is visalized in figure 3.2.
The simulation was run with dhcaeLLTSThermoParcelSolver for 20.000 iterations. Then the final results
were mapped to reactingParcelFoam and the simulation was continued for another 700.000 iterations
or 100s of simulation time. There is a small disturbance visible immediately after switching the solver:

13

since we don’t have the droplets in place after stopping dhcaeLTSThermoParcelSolver (they evaporate
completely in each iteration), reactingParcelFoam must start with a droplet free domain.

It should be obvious that you can stop the continued simulation after a few seconds of simulation
time. While the complete simulation with reactingParcelFoam needs some 100s to be converged, the
continued simulation does not change any more after 15s. So there is a saving when using dhcaeLTS-
ThermoParcelSolver first!

3.4 Alternative simulation with reactingParcelFoam

Of course it makes sense to run reactingParcelFoam as an alternative to dhcaeLTSThermoParcelSolver.
This is an efficient way to verify the correctness of the LTS convergence acceleration approach. And
it can make you happy to see how much time you can save with the LTS procedure in contrast to a
PISO or PIMPLE based solver.

14

Chapter 4

Test cases

Two series of test cases are provided. One serie makes use of wedge elements to reduce computational
time and memory usage. To run this serie you must modify the OpenFOAM’s source code as described
in section 2.2. The other serie uses a 90 degree segement of the simplified quench with standard
symmetryPlanes. These simulations do not need a modification of the source code, just a compilation
of the provided dhcaeLLTSThermoParcelSolver.

4.1 Specifics of the provided meshes

To keep computational time low the mesh resolution for both series is chosen very coarse! To improve
the accuracy of the results you need to refine the meshes by editing the blockMeshDict files. How-
ever a fine resolution of the mesh will take the simulations to run for several days. For this quick
introductionary cases we stay with the lower results quality and with the short computational times.
The parameter configuration for the LTS approach is optimized for the coarse meshes to a certain
extent. When using finer resolution you need to to further LTS parameter tuning to get optimum
performance.

4.2 Wedge series

Four cases are provided which are partially dependend on each other.

4.2.1 case rhoSimpleFoam

First of all you should run the initialization case with name “case rhoSimpleFoam”. You can do this
by starting the “Allrun” script in the case rhoSimpleFoam directory or by calling the “Allrun” script
of the above level.

4.2.2 case dhcaeLTSThermoParcelSolver

Next you can run the dhcaeLTSThermoParcelSolver case. This simulation does not take that much
time, so it’s a good point to start with. You can run the case by calling the “Allrun” script in the
case_dhcaeLTSThermoParcelSolver directory.

After starting the simulation you can open another shell and navigate to the cases directory again. If
you have gnuplot installed you can visualize the simulations progress by typing “gnuplot gnuplot.Me”.
The simulation will run for 4.000 iterations. As you can see in the gnuplot charts a steady state is
reached by then.

The results in directory 4000 are used to initialize the case reactingParcelFoam continued simulation,
so don’t delete it too early!

15

4.2.3 case_ reactingParcelFoam continued

If you have a fast machine or plenty of time you can run the case reactingParcelFoam continued. It
will be initialized with the results from case dhcaeLTSThermoParcelSolver, so you need to run this
simulation first.

The output of the solver is simply written into the shell, it is not written to the HDD. The reason is
simple: it’s a very huge file (hundreds of MB) and there’s not that much interesting information in it.
After starting the simulation you can start another shell and use “gnuplot gnuplot.Me” to visualize the
simulations progress. You will have to wait until the first two seconds are written out, otherwise the
necessary data is not available for gnuplot yet and there will be an error message. Just wait a little
while and try the gnuplot command again.

4.2.4 case reactingParcelFoam

If you have even more time available then you can run the complete case with the PISO based react-
ingParcelFoam. Just run the “Allrun” script in the case directory. The initialization is done by the
results from the rhoSimpleFoam case.

Again the output of the solver is only written to the shell. And again you can watch the simulations
progress with “gnuplot gnuplot.Me” after the first few seconds of simulation time.

4.3 3D series

Running the cases with the 90° segment of the quench will provide you even more reliable results
than using the wedge mesh. However in the provided cases the mesh is still not large enough to get
advantages from using parallel computation. You may want to adjust the system/decomposeParDict
files and the Allrun scripts to fit your needs when having more CPU’s available and dealing with bigger
mesh sizes.

As described in the section 4.2 “Wedge series” you can start the individual cases by running the Allrun
scripts.

4.4 Some results
To give you an impression of the results that you can expect from the test cases the H20 fraction and

the temperature distribution are shown in figure 4.1 in a comparison of the LTS based solver and the
PISO based solver.

16

H20 fraction
LTS solver D0 O T2 000, D i

PISO solver
T (K)
LTS solver 400 600 800 1000

1200

PISO solver

Figure 4.1: A comparison of results from dhcaeL.TSThermoParcelSolver and reactingParcelFoam.

17

Chapter 5

Hints

5.1 reactingParcelFoam

Several of the files and there dictionaries need your full attention. From the wide variety of settings
here is a selection of the most error-prone.

5.1.1 constant/reactingCloud1Properties

conelnjectionCoeffs
{
SOI 0.0; // start of injection
duration 100.0; // duration of injection in seconds
positionAxis (((0.0 0.0 0.0) (00 1)));
massTotal 0.1; // 100s = 0.001kg/s = 0.1 kg
parcelsPerInjector 5000000; // 50000 parcels % 100s
parcelBasisType mass;
flowRateProfile constant 1.0;
Umag constant 11.0;
thetalnner constant 0; // 0 —> full cone
thetaOuter constant 75;
sizeDistribution
{
type RosinRammler ;
RosinRammlerDistribution
{
minValue 3.7e—5;// 37 micrometer
maxValue 1.65e—4;// 165 micrometer
d 7.0e—05; // 70 micrometer
n 0.5;

SOLI: Start of injection. Does this value fit to your start time in system/controlDict? You may want
to start injection immediately at the beginning of the simulation, or at any later point of time.
If your simulation does not start at time 0.0 (as it is the case in the continued simulation with
reactingParcelFoam), you must adjust this value to the desired start time.

duration: For how long shall the parcels be injected? This value in combination to the massTotal
definition determines the injection rate! Both of these values must fit to the length of your
simulation defined in the system/controlDict with startTime and endTime. Another effect is
that you can’t change the endTime on the fly during your simulation.

massTotal: How much mass shall be injected in the complete injection period? This value must fit
the startTime and endTime in the system/controlDict, as well as the duration in the constan-

18

t/reactingCloud1Properties. It must fit the “area” of the conelnjector, too: when running the
simulation on a wedge mesh, massTotal is smaller than in the case of the 90 degree segment.

parcelsPerInjector: How many parcels shall be injected during the complete injection period? To
get a good resolution you must start a rather large number of parcels!

5.1.2 system/controlDict

adjustTimeStep yes;
maxCo 0.2;
maxDeltaT le—03;

maxCo: The value maxCo for the maximum Courant number (see section 1.3) is crucial for the
accuracy of the solution on the one hand, while being essential for the amount of computational
time necessary on the other hand! In the provided cases you will get excellent compliance with
the results from the dhcaeLTSThermoParcelSolver when setting the maxCo to 0.2 or lower.
But it will take quite a long time to get the simulation finished. Setting maxCo to 0.5 or higher
reduces computational time, but the results will be a bit different, too. If your specific geometries
guarantees that the maxCo value is not reached in the cells which are actually being traversed
by particles, you may be able to set higher values than in the provided cases.

5.1.3 Don’t use PIMPLE instead of PISO

Although you can enable the PIMPLE algorithm by setting the nOuterCorrectors parameter to a value
> 1, it is not recommended at all. The particle transport suffers awfully from the higher time step,
and although you can speed up the simulation a bit, the results are bad.

19

DHCAE Tools UG (limited liability company)
Friedrich-Ebert-Str. 368

47800 Krefeld

Germany

Phone +49 2151 821493

Fax +49 2151 821494

